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1 Introduction

The 21th century is the age of information. Every year the amount of new data that is accessible
to analysts get higher. More sensor networks get installed, higher resolutions in both, the data
dimensions itself and the time, get possible, more communication over the global network is
made and new methods for measuring health, environment, social and Vnance parameters are
developed. If this data is used by the right, ethical way, it can have a huge impact on our society,
pushing the global development and making new technologies possible. Not just since “Big
Data” got the buzzword of the year and thousands of new companies try to sell their products
for data analysis, it is clear that this amount of data can only be analyzed using fast computers
and clever algorithms.
In the last decades many researchers developed methods to group data [Est+96], predict

new data [Qui93] or Vnd anomalies [Bre+00]. But more data does not only mean more data
points, it also means more dimensions. And so, many methods getting slow or does not work
anymore. This fact is known as curse of dimensionality [Bel57; Bey+99]. When the number
of dimensions get higher, dimensions can be grouped together because they are similar or
describe disjunct features. This process is also called feature selection and the groups can be
called subspaces. If the data is projected into this subspaces, standard analysis methods can
be used. So researchers developed methods for feature selection [CFZ99; KMB12]. They oUer
good results when used with high number of objects and a high number of dimensions and
some of them are also proven in a theoretical way, but have one common problem: they are
really slow. Having a cubic or higher complexity in the number of dimensions, it is not possible
to use them for todays or future data sets. For many of them, it is also not possible to use
them in a parallel way, which is highly important today and will get essential in the next years.
Another problem are the parameters of the algorithms. If there are too many parameters which
interfere with each other and are not intuitive, analysts just choose default, random or dummy
parameters and are not able to get a good result. It is also very common to have parameters
which ranges that heavily depends on the structure of the input data and not only the data size
[CFZ99]. The perfect case would be a few parameters with intersected eUects and Vxed ranges.
So why is this a problem so relevant, you may ask. Just use a faster computer and more

memory or wait a day, a week, a month or even longer. It is important because we are wasting
the most important resource we have. It is not water, not energy, not oil, not gold or lithium. It
is not knowledge or intelligence. Our most important resource is time and we all are running
out of them. I believe that there is a way to get the relevant information faster, just at the
moment when you need them. Even when ad-hoc data analysis is not possible today, I believe
it is possible in the future. And it will change everything – the way we consume information
and media, the art of describing our environment and our society, the way people life and
communicate, the methods of research, production, planning and design, even the way we
think and decide.
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1 Introduction

As a Vrst, small step to this future I propose a new faster method for feature selection: Graph
Based Subspace Search, or GraBaSS. It may not be as exact or mathematically proven as some
of the competitors. But it works fast, parallel, the parameters are easy to choose and the
results are intuitive. Depending on the chosen parameters, it can be used for automatic and
manual data processing. It is also possible to choose how strong the requirement of similarity
is, depending on the data set and the ways the subspaces should used later.
GraBaSS is build on the insight that in the most subspaces all dimensions are similar to

each other, which forms a binary relationship. In contrast to other approaches, which often
use a bottom up approach to Vnd subspaces and require an enormous amount of time and
space, GraBaSS uses this binary relationship to form a graph. This graph gets optimized and
the cliques in the resulting graph are forming the subspaces. This work also discusses how
to decide if two dimensions are similar and builds a framework around it. This can be used
for further research and as possibility to modify GraBaSS for special purposes, e.g. to Vnd
subspaces with only linear relationships or where the dimensions are a special transformation
of each other.
A special chapter of this thesis discusses the implementation of the algorithm. It explains

decisions about programming languages and frameworks and gives useful tips that can be used
to implement other methods in a high performance way. The implementation of GraBaSS is
provided as Open Source, so that everyone can use it to process its own data and to learn from
the implementation. Together with GraBaSS a data backend is provided that stores parsed
data like a column storage but gives low level access for good performance. It enables to use
the same parsed data set for other tasks like cluster search or outlier detection after doing
the subspace analysis. Because dimensions are stored separately, no changes of the storage is
required if other tasks are only done in a speciVc subspace.
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2 Designing a high performance algorithm

To handle current and future big datasets a special approach is required. In this chapter I
will design a high performance algorithm that is able to handle this task. The main goal is a
method that does not beat the complexity ofO(|D| · |N | · log |N |+ |D|2 · |N |). This complexity
is a good upper bound. It combines the bounds of two diUerent tasks. The Vrst one is the
preprocessing and structure detection of all objects in all dimensions. O(|D| · |N |) would
be enough to normalize the data, but O(|D| · |N | · log |N |) allows some better methods like
sorting. The second part is the detection of relations between all dimensions, which could be
done in O(|D|2). In combination with a non-Vxed number a elements, a good method needs
O(|D|2 · |N |).
To deVne a algorithm, it is necessary to describe what it should calculate. As stated in the

introduction it should extract subspaces from the data set, so a description of what a subspace
is would be helpful:

DeVnition 1 (Subspace). A subspace is a collection of dimensions which are similar to each
other. This collection should be maximal. It is possible that one dimension is contained in
multiple subspaces or, in other words, that subspaces overlap.

According to the deVnitions the set of all subspaces does to not partition the set of dimen-
sions. The deVnition also avoids a description if the relation of dimensions in one subspace are
pairwise or can only be described by functions with more than two arguments. For GraBaSS
I chose a pairwise deVnition because it is suXcient for the most real world data sets. As tests
in chapter 5 show, I am right with this assumption. Chapter 4 describes when this can be a
problem and how to work around it.

2.1 A question of similarity

To search and Vnd subspaces and to use them for further analysis, it is necessary to describe
when dimensions should be share the same subspace. In words, a good but very common
description is that they should be similar. But this term has diUerent meanings for diUerent
applications and in diUerent Velds of science. To use the results for analysis, it is important to
know which structures or attributes dimensions of the same subspace share. It does not make
any sense to use a metric based on covariance for the subspace search algorithm when your
outlier detection uses an Manhattan metric to detect high distance points. So, the similarity
metric should be chosen wisely. To do so, it should deVned:

DeVnition 2 (Similarity). A similarity s : D ×D → [0, 1] describes how similar two dimen-
sions are. 0 means “not similar” and 1 means “very similar”. It must satisfy the following
attributes:
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2 Designing a high performance algorithm

1. Computability: Their has to be an algorithm, two calculate the similarity for two given
dimensions and a Vxed number of points.

2. Symmetry: For all dimensions a, b ∈ D it holds that s(a, b) = s(b, a).

3. Identity: For all dimensions a ∈ D it holds that s(a, a) = 1.

The deVnition also includes the computability. Because this thesis is about high performance
feature selection, the complexity of the algorithm is highly important.1

A well known similarity is based on the Pearson correlation coeXcient. It can be cut to [0, 1],
squared or the absolute value can be calculated to get a similarity. The correlation coeXcient
can be calculated inO(|N |). For many applications, this type of similarity is suXcient. Because
it describes a linear relation, there is an underlying structure which has to exist. Because this
structure only has two degrees of freedom, it is very biased.
To handle complex data, a less biased method has to be constructed. One way to do it is to

utilize metrics:

Theorem 1. Given a limited metric m : D × D → [0,∞), l := supa,b∈D×Dm(a, b) < ∞ a
similarity can be constructed in the following way:

s(a, b) = 1− m(a, b)

l
(2.1)

When the dimensions of the input set are limited, all p-norms can be used to construct a
similarity by calculating the distance of all points in the dataset:

Theorem 2. Given a p-norm ‖ · ‖p, a similarity can be constructed by using the normalized sum
of all distances:

s(a, b) = 1− ‖πa(N)− πb(N)‖p
|N |

(2.2)

p-norms can be calculated very eXcient but are more biased than the Pearson correlation
coeXcient, because they are only high if two dimensions are nearly equal in many dimensions.2

So they are also biased and not usable for many applications.
Another approach to create new similarities is to combine a metric together with a machine

learning algorithm. This should be less biased because many machine learning algorithms can
produce very Wexible results:

Theorem 3. Given a two dimensions a, b ∈ D, a set of prediction algorithms P = {p : R→ R}
and a machine learning algorithm l : (R → R) → P , a similarity can be formed by choosing
two subsets T, V ⊆ N , T ∪ V = N , train the prediction algorithm and validating the results by

1Please notice that big constant factors are also important if they are part of the algorithm. Constant factors
should be small if possible.

2The number of this dimensions depends on the chosen p
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2 Designing a high performance algorithm

measuring the diUerence:

p1 = l(πa(T ), πb(T )) (2.3)

p2 = l(πb(T ), πa(T )) (2.4)

s1 = 1− ‖πb(V )− p1(πa(N))‖
|V |

(2.5)

s2 = 1− ‖πa(V )− p2(πb(N))‖
|V |

(2.6)

s(a, b) = s1 · s2 (2.7)

Please choose the training and validation set wisely, especially when you expect outliers in
the dataset.
Since machine learning algorithms allow comparison of dimensions with Wexible structure,

an important question is how Wexible a structure can be to allow a comparison. Mathemat-
ics had found a answer to this question long time ago. They deVned the term and rules of
independence:

DeVnition 3 (Independence). Two dimensions X,Y ∈ D are independent, iU:

P (X = z, Y = z) = P (X = z)P (Y = z) , ∀z ∈ R (2.8)

This deVnition is used by many mathematics worldwide but has one problem. If we assume
a limited dataset with real number values and just a little bit random noise, no value in the
dimensions will appear twice. According to the deVnition of independence, all dimensions
will be independent in this situation. So it is necessary to extend the Dirac masses to another
probability. This can be done by using window functions, which leads to an continuous
probability. Another method is binning by using Vxed size bins. Because it is possible that the
data resolution is diUerent in diUerent parts of the dimension, guessing window sizes or bin
widths is not possible every time and can lead to wrong results. To circumvent this problem, I
will introduce a method that is known widely but not used by many researcher and analysts:
binning with Vxed number of objects per bin. To express the eUect of this method, I will call it
rewrapping.
Rewrapping handles dense data regions very well and ignores non used regions. It is also

able to reverse every strict monotone function. This kind of function may occur as part of the
measurement of real world data. Figure 2.1 illustrates the process of rewrapping. The number
of bins is not a user provided parameter. It is set to

√
|N | to honor the fact the more data

points also describe a more detailed information about the distribution.
Because real value data can contain discrete values, a small modiVcation is required. Bins

are created from the lower to the upper bound of the dataset. If the border between a created
and a new bin will split a set of equal values, the entire set will assigned to the lower bin. This
can lead to a diUerent bin number and Vll size. See algorithm 1 for a complete deVnition.
To extract a measure of independence from the discrete data set, the mutual information is

calculated:
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2 Designing a high performance algorithm

Figure 2.1: Rewrapping
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(a) Sample 1: Input data
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(b) Sample 1: Result of rewrapping

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

dim 3

dim 4

(c) Sample 2: Input data
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(d) Sample 2: Result of rewrapping
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(e) Sample 3: Input data
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(f) Sample 3: Result of rewrapping
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2 Designing a high performance algorithm

Algorithm 1: buildBins
Data: Dimension d
Data: Binsize s
Result: Bins B

1 begin
2 B ← ();
3 ds← sort(d);
4 x← undef;
5 b← ();
6 for x ∈ ds do
7 if |B| ≥ s ∧ x 6= l then
8 B ← B+: b;
9 b← ();

10 end
11 b← B+: x;
12 l← x;
13 end
14 if |b| 6= 0 then
15 B ← B+: b;
16 end
17 end
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2 Designing a high performance algorithm

DeVnition 4 (Mutual Information). For two discrete dimensions X and Y , which are only
described by their bins and the probability of each bin, the mutual information I (X,Y ) is
calculated by:

I (X,Y ) = H (X) + H (y)−H(X,Y ) (2.9)

To do this, the entropy has to be calculated as followed:

H(X) = −
∑
x∈X

p(x) log p(x) (2.10)

H(X,Y ) = −
∑

x∈X,y∈Y
p(x, y) log p(x, y) (2.11)

To convert the value of mutual information to a similarity, it has to be normalized by the
following method:

Theorem 4 (Normalized Mutual Information). The normalized mutual information of two di-
mension X and Y is calculated by the following equation

I (x, y)norm =
I (X,Y )

min (H (X) ,H(Y ))
(2.12)

Proof. See [Yao03].

Mutual information and independence do not respect permutation of the bins. This can lead
to very unintuitive results and makes the calculation heavily depend on the number of bins and
their borders. Figure 2.2 shows an example of this problem. The dimensions of the two shown
data sets have the same value of mutual information, but when it is clear that the dimensions
shown in Vgure 2.3a are more similar as the dimensions shown in Vgure 2.3b. To Vx this, the
information from the absolute Pearson correlation coeXcient could be mixed in. This describes
if two dimensions are linear correlated and avoids random permutations. The two similarities
should be combined in a way that acts like a logic AND. Because both values are real, but have
the same range, a limited, non-complete logic can be used:

DeVnition 5 (Similarity Logic). Similarities can be used as logical values in the following way:

true ≡ 1 (2.13)

false ≡ 0 (2.14)

¬a ≡ 1− a (2.15)

a ∧ b ≡ a · b (2.16)

a ∨ b ≡ 1− (1− a) · (1− b) (2.17)

Please note, that this system is not correct in terms of logic, because a ∧ a = a, but a ∧ a ≡
a2 6= a. This fact does not make this system wrong, because it makes sense that the claim of
a ∧ a requires a to be stronger than simple claim a alone.
It is now possible to combine diUerent similarities to one Vnal value. As described above,

the mutual information is combined with the absolute Pearson correlation coeXcient using
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2 Designing a high performance algorithm

Figure 2.2: Permutation of bins
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Figure 2.3: DiUerent similarities

the AND function or, in other words, by calculating the product of them. Figure 2.3 gives an
overview about the diUerent similarities and how they work together. There are also stronger
and weaker deVnitions in terms of how the rely on a predeVned structure. For example the
absolute Pearson correlation coeXcient only works well with linear correlation but avoids
random permutations, whereas the normalized mutual information is more Wexible but ignores
permutations. Using this building blocks, it is possible to swap the Vnal similarity when doing
further research or combine it with new deVnitions.

2.2 From similarity to subspace

Based on the combined similarity it is possible to calculate subspaces by calculating the binary
relation between all dimensions and Vnd groups that have strong connections. It is important
to Vnd this groups in this |D|2 relations highly eXcient.
Next, I want to discuss how subspaces are formed. Two dimensions should be contained in

the subspaces, when they are similar. This can be expressed by a threshold pe ∈ [0, 1], which
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2 Designing a high performance algorithm

Figure 2.4: DiUerent subspaces from diUerent graph preprocessing
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the combined similarity should have. By stripping down the similarity matrix to a binary
matrix, the dimensions form a graph. This speeds up the calculation, because it allows fast set
operations and memory eUective management. Because the most data sets have very diUerent
dimensions, the number of edges should be low.
The important attribute of subspaces is that all contained dimensions are similar to each

other. For graphs this attribute is already described as clique. Because the graph is dense it has
a low degeneracy d ∈ N0. So, the cliques can be calculated in O(d · (|D| − d) · 3

d
3 ) by using

[ELS10]. Because the cliques forms the subspaces, this is the complete algorithm for converting
the combined similarity to subspaces.

2.3 Optimizing the graph structure

A core problem of strict clique searchers is the heavy fragmentation if only one edge missing.
Figure 2.5a shows an example where the nodes semi-clique {1, 2, 3, 4} is split into two cliques
because of the absence of the edge (1, 3). For some applications it could be helpful to add this
edge to the graph and join the two cliques into one. The Vrst method to do it is the utilization
a distance graph:

DeVnition 6 (Strict Distance Graph). Given a graph G = (V,E) and a distance n ∈ N0, the
strict distance graph Gn = (V,En) is give by:

E0 =
{
(v, v) ∈ V 2

}
(2.18)

Ei =
{
(v0, v2) ∈ V 2 | ∃v1 ∈ V : (v0, v1) ∈ Ei−1, (v1, v2) ∈ E

}
, ∀i > 0 (2.19)

Because it does not make any sense to forget about the given edges when calculating higher
distances, the deVnition of the joined distance graph is more useful:

10



2 Designing a high performance algorithm

DeVnition 7 (Joined Distance Graph). Given a graph G = (V,E) and a distance n ∈ N+, the
joined distance graph Gn = (V,En) is deVned as followed:

En =

n⋃
i=1

Ei (2.20)

Using the joined distance graph Vxes the problem but does not produce the desired result.
As seen in Figure 2.5b, it attaches to many new vertexes to the cliques and make the results
unusable. The reason is that it does not count the strength of the connection in the existing
graph and so it creates some edges to weakly connected vertexes. A measure for the connection
rate between two vertexes can be calculated by the following equation:

DeVnition 8 (Connection Rate). Given a graph G = (V,E) and two vertexes v1, v2 ∈ V ,
the connection rate rG(v1, v2) ∈ [0, 1] can be calculated by the relation of connected to all
neighbors of v1:

rG(v1, v2) =
|{v ∈ V | (v1, v) ∈ E} ∩ {v ∈ V | (v, v2) ∈ E}|

|{v ∈ V | (v1, v) ∈ E}|
(2.21)

Please notice that the connection rate is not symmetric. To honor the connection rate of the
vertexes, I use a Vltered strict distance graph:

DeVnition 9 (Filtered Strict Distance Graph). Given a graph G = (V,E), a distance n ∈ N+

and a Vlter rate α ∈ [0, 1], the Vltered strict distance graph Gnα = (V,Enα) is deVnined as
followed:

Enα = {(v1, v2) ∈ En | rGn−1(v1, v2) ≥ α} (2.22)

The joined Vltered graph, that considers all distances up to a given value, is deVned analog:

DeVnition 10 (Filtered Joined Distance Graph). Given a graph G = (V,E)a distance n ∈ N+

and a Vlter rate α ∈ [0, 1], the Vltered joined distance graph Gnα = (V,Enα) is deVned as
followed:

Enα =
n⋃
i=1

Eiα (2.23)

The Vltered joined distance graph is not bidirectional. This leads the problem that there
are unidirectional edges that are not usable for our result. As Figure 2.5c shows, the weakly
connected nodes are connected to the semi-clique whereas the semi-clique is not connected to
the satellites. The inter semi-clique edges are bidirectional. Based on this fact, a bidirectional
graph can be constructed:

DeVnition 11 (Bidirectional Joined Filtered Distance Graph). Given a graph G = (V,E), a
distance n ∈ N+ and a Vlter rate α ∈ [0, 1], the bidirectional joined Vltered graph G̃nα = (V, Ẽnα)
is deVned by the subset of the bidirectional edges of the joined Vltered graph:

Ẽnα =
{
(v1, v2) ∈ V 2 | (v1, v2), (v2, v1) ∈ Enα

}
(2.24)

11



2 Designing a high performance algorithm

As shown on Figure 2.5d this method successfully adds inter semi-clique edges to join them
to cliques without creating senseless connections or resulting in information lossage. It is
important that the graph reVnement does not slow down the entire process on big data. In
other words, it must not have a higher complexity class. Because the distance parameter n is
only used for graph Vxing and should not depend on the input size, the following theorem can
be shown:

Algorithm 2: extendNeighbors
Data: Vertex v
Data: Graph G
Data: Threshold tn
Result: New neighbors N

1 begin
/* Search all candidates */

2 C ← {};
3 for w ∈ getNeighbors(v) do
4 C ← C ∪ getNeighbors(w);
5 end

/* Check all candidates */
6 N ← {};
7 for c ∈ C do
8 if calcConnectionRate(v, c) ≥ tn ∧ calcConnectionRate(c, v) ≥ tn then
9 N ← N ∪ {c};

10 end
11 end
12 end

Theorem 5. The graph reVnement can be done in O(n · |V | ·m2) where n ∈ N+ is the Vxed
distance parameter and m ∈ N0 is the number of maximum neighbors over all vertexes in the
resulting graph.

Proof. In this proof, I assume that the neighbors for of each vertex are stored in a set, which
allows lookup and insert operations in O(1).
The graph will generated from the graph with the distance n − 1 where a distance of 1 is

the input graph. Every of this rounds contains three steps and is done for every vertex in
the graph. The Vrst step is the listing of all neighbor candidates without taking connection
rates into account and joining them into one set. For each vertex, this takes O(m2) operations
and results in O(m) candidates. Step two is the calculation of the connectivity, which can
be done in O(m) for every candidate. For all candidates, it takes O(m2) operations. The last
step is the Vltering according to the connectivity and the build-up of the new neighborhood-
set, which takes O(m) operations. All steps together take O(m2) operations for each vertex,
which is O(|V | ·m2) in total. Because this process is repeated n times, the total complexity is
O(n · |V | ·m2).

12



2 Designing a high performance algorithm

Algorithm 3: reVneGraph
Data: Graph G
Data: Distance d
Data: Threshold tn
Result: ReVned Graph Gr

1 begin
2 Gr ← G;
3 for i=2 to d do
4 Gn← ();
5 for v ∈ Gr do
6 Gn← Gn+: extendNeighbors(v, Gr , tn);
7 end
8 Gr ← Gn;
9 end

10 end

Assuming, that the number of maximum neighbors is small and especially lower than |D|,
the graph Vxing process does not have a performance impact. Tests prove this assumption, see
section 5.4 for details.

2.4 Algorithm Summary

After discussing all parts of the algorithm, I will now wrap up the entire workWow and explain
some optimizations. The main method is shown in algorithm 4. It uses the methods explained
earlier. Please note that no method uses a global shared state. This functional attribute helps
when it comes to parallelization of the algorithm.

First of all, some values that only depend on one dimension are pre-calculated, this are the
mean, the variance and the standard deviation of the dimensions. This step can parallelized at
two points. Because the result for one dimension only depends on this dimension itself, the
values for multiple dimensions can be calculated independently. The mean and the variance
are sums. This sum up can be parallelized can by multiple methods, because all sub sums are
independent.

After this, the discrete bins are created. Because bins are only build on top of the information
of one dimension, multiple dimensions can handled in parallel too. The creation of the bins
requires that the data is sorted by the actual dimension. This sorting can also be done by a
parallel algorithm, e.g. merge sort.
Now, the initial graph is build. This is done by calculating the absolute Pearson covariance

coeXcient and the normalized mutual information. Then, the product is calculated and an
graph edge between this two dimensions is created, if this value is at least te. I suggest to
parallelize the inner loop and leaf the outer one as it is. Depending on the size of the data

13



2 Designing a high performance algorithm

Algorithm 4: calcSubspaces
Data: Dataset D
Data: Threshold te
Data: Graph distance d
Data: Threshold of the graph connection rate tn
Result: Subspaces S

1 begin
/* Pre calculate aggregates */

2 Dm← calcMeanValues(D);
3 Dv ← calcVarValues(D, Dm);
4 Ds← calcStddevValues(Dv);

/* Build grid */
5 Dg ← ();
6 for d ∈ D do
7 Dg ← Dg+: buildBins(d,

√
|D|);

8 end

/* Build graph */
9 for (d1,m1, s1, g1) ∈ (D,Dm, Ds, Dg) do

10 n← {};
11 for (d2,m2, s2, g2) ∈ (D,Dm, Ds, Dg) \ {(d1,m1, s1, g1)} do
12 x1← coVar(d1, d2,m1,m2)

s1·s2 ;
13 x2← dimSimilarity(g1, g2);
14 if x1 · x2 ≥ te then
15 n← n ∪ {d2};
16 end
17 end
18 G← G+: n;
19 end

/* Refine graph */
20 Gr ← refineGraph(G, d, tn);

/* Search cliques (which are our subspaces) */
21 S ← searchCliques(Gr);
22 end

14
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set, this minimizes the number of page-in and page-out operations.3 Because the Pearson
covariance coeXcient and the value of mutual information are symmetric, it is only required
to calculated the one half of the adjacency matrix.
Before calculating the cliques, the graph is reVned by adding new edges. The performance

trick by using the symmetry of the adjacency matrix works here too and the loops can be
parallelized in the same way as done in the graph generation process.
Finally, the cliques are searched by [ELS10]. Because the algorithm has multiple loops with

independent recursions in them, it can be parallelized at this points.

2.5 Choosing parameters

Choosing the right parameters is important to get usable results. This choice also depends on
the problem you want to solve or the information you want to extract from the data. The usage
of the data by automatic analysis methods targets high information volume and low error rates.
Manual, human driven analysis and exploration requires short, readable and non-redundant
reports. In this case, a higher error rate is accepted to simplify this task. The GraBaSS has 3
parameters, te, tn and d which should be used as followed.
The Vrst parameter is te ∈ [0, 1], which is the threshold that describes the lower bound of

the similarity of an edge of the graph. If the similarity of two dimensions is at least te, they are
assumed to be similar. This results in an edge in the graph structure and is used by the clique
searcher. I suggest to choose 0.4 as start parameter. If the algorithm Vnds too small subspaces,
decrease the parameter. If the results contains only a few but big subspaces, the parameter is
too low.

The second parameter tn ∈ [0, 1] and the third parameter d ∈ [0,∞] should be used together.
d describes the maximum graph distance for the graph Vxing process and tn the threshold of
the amount of graph common neighbors in this distance that is required to create a new edge. I
suggest to choose tn = 0.75 as a start parameter and d = 0, which deactivates the graph Vxing.
Please note that d = 0 and d = 1 are leading to the same results, because a distance of 1 is
already given by the graph. If the results of GraBaSS contains to many similar subspaces with
only a few diUerent members, d should be set to 2. The choice of tn depends on the number
of diUerent subspace members. I suggest a value above 0.6, because smaller values lead to a
lose of to many information. If this still not help to improve the results, try to increase d by
1. If you get only a few but very big subspaces, d is too high or tn is too low. Please note that
applying the graph Vxing always leads to a lose of information. In some cases, especially when
manual data exploration is intended, it could be helpful to use it to get some more readable
results.

3Do not hope, that an entire dimension can be hold by the cache, so cache locality is not an argument.
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3 Implementation

For the researcher who want only get a described complexity it is suXcient to use a favorite
programming language or DBMS. But if you want to handle big data before getting to old, it
is important to choose the right tools and think about some implementation details. In this
chapter I want to describe and explain my choices and would like to give you some impressions
about the implementation process. Some but not all strategies can also be used for other
algorithms and may be used for some other work too. I will Vnish the chapter with some ideas
about future improvements.

3.1 Choosing a programming language

To express the designed algorithm and let the computer do the job it is necessary to write some
source code. There are dozens diUerent programming languages out there and every language
has its own pros and cons.
A simple and very comfortable choice is a language with a good build-in runtime library.1

Python or MATLAB is a good choice. Please notice that SQL or other database bound languages
are not very portable and suUer when it comes to debugging and Wexibility. If the language
provided a embedded mathematic system like MATLAB, it is easy to map the theoretical terms
to the language. Matrix support makes it easy to handle big amounts of data. The key feature
of the language should be syntax that does not produce much boiler plate. This is one point
where script languages are very good, but languages like Java are not. C++ provides a short
syntax for many things, but suUers like many other compiled languages when you want a
comfortable environment. Typesafety is another point that can be useful because it allows you
to tackle many bugs before you waste your time for runtime tests.

The next point is a good library support for things that the chosen language does not provide.
Matrix operations require a special library, especially if you want to invert or decompose them.
High precision Woating point operations and big integer calculation needs a diUerent library.
Parsing, code management or special IO operations is another topic. Also notice that I don’t
mean the standard library. A well tested and documented library is required. For example
NumPy if you use Python.
In addition to the things you as the author and primary user of the implementation Vnds

useful are the problems your team or the consumers need. An exotic language2 may be very
cool but if nobody can read your code, your research result doesn’t help someone. This does
not mean that you have to stuck in old good Java or COBOL, but it means that you have to think

1What “good” means in this context depends on the algorithm that you want to implement and the operations
you need.

2Don’t know what I mean? Go and Vnd something about APL
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about the innovation you want to use. Also think about portability, future development and
safety of the language. Safety is important if you don’t want to risk the data of your institution
or the consumers. You may think that the implementation is only for internal tests but if your
results are good it can be the case that your code will be published or used by other persons.
Even if low level languages can be insecure when doing unchecked memory operations, also
interpreted languages have many weaknesses.

You may ask where this all have to do with high performance. The simple answer is: nothing.
They make your life easier, but do not provide a fast implementation. So the most important
point for my work is performance. And this kills the most high level languages, because they
do not provide a Vne grained control about data allocation, movement and copying. Even
the object overhead of languages like Java and naive C++ is too big. I had to strip down the
calculation core to a simple low level core. But I do not want to loose all high level features. In
my eyes, there is currently only one languages that provides this schizophrenia: handcrafted
and well written C++. I will give you some rules about hints about the language speciVc
methods in the next section.

3.2 Special C++ tips

C++ can be used in many diUerent ways, depending on your background, the interfaces you
want to use or have to provide and the attributes your program should have. As most other
programming languages out there, C++ is available in diUerent standards and the compiler and
STL support diUers. One of the best collections of tips for good programming style is [Mey05].
Furthermore I used the new C++11 standard which brings makes many code sections easier
to read and more C++ stylish rather than C based. It also avoids many boiler blade an manual
memory management. Templates may be the most hated but most also most loved and most
essential features of C++. I used them when I Vnd it useful. Some calculations are written
in C style because in some cases, the object overhead was to high. Because of the usage of
new C++11 features, the resulting code only compiles with newer versions of GCC and Clang.
Microsoft and Intel compilers are not supported at the time of the writing.

3.3 Avoiding reinventing the wheel

The STL already provides useful tools that makes programmers life much easier. But it does
not provide high level thread operations like fork and join, system operations like memory
mapped IO and fast a fast parser library. C++ has a special collection of well designed and
reviewed libraries that are note yet a part of the STL: The Boost C++ Libraries. They provide
two of the three libraries I was looking for – the Boost Interprocess library, which implements
memory mapped IO and the Spirit V2 library which is a special set of function and templates
for parser writing. For high level multi core operations I use another well known library: the
TBB, which is designed and published by Intel. All libraries are open source and free which
enables researcher to use them for their work.
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3.4 The low level data backend

In the Veld of data processing and data mining, many algorithms where build on top of existing
server driven databases. This has many beneVts. In many cases, the data that should be
analyzed already exists in this databases in a normalized form and is supplied by fresh data.
Because of the nature of feature selection, column stores are than row oriented stores. They
provide a cache local access to data of diUerent dimensions and reduces the processing overhead.
The main drawback of the most server driven data stores is the performance when using
complex algorithms.3 Another solution is using an embedded database like SQLite, but they
also have too much overhead when accessing raw data. Please consider that the database also
provides too many operations that are not needed for this kind of data processing. Only append
and read operations are required, no indices, no aggregations, no write, modify and delete.

This brings me to the question why I need a backend for data storage. In the current situation,
most researchers don’t have systems with enough main memory to hold the complete data.
So it is important that they have a backend that can easily page out data to the disc or SSD.
This should also be combined with low overhead. So sequential loading on demand is not an
option. Another problem is that the application programmer cannot easily determine, when
the system runs out of memory, because the OS swaps out data on its own discretion. An old
but very wise advice of OS designers is, that the kernel always has better information about
the entire system than every user program. So why not let the kernel do the job? So I decided
to just use plain arrays for column representation and memory map them from a Vle. So the
kernel can load them or page them out if necessary. For better management and better append
operations, the columns are deVned into Vxed size segments. The segments and the column
metadata like size and name are managed by the Boost Interprocess Library, which uses a trees
to manage a string to pointer mapping.
As shown in chapter 2 the algorithm needs a graph structure. An append only graph can

mapped to a column store by utilizing two columns and encode each vertex as an unique, con-
tinuous, unsigned integer. One column is called the neighbor column and stores the appended
list of all neighbors of all vertexes. The other column is called the index column stores the
split points of the neighbor column. To get back the neighbors of an vertex v, just output the
neighbor column from the index that is written in the in index column at position v to the
index that is written at position v + 1.
Maps for pre-calcuated metadata can also be mapped to column stores by storing key value

tuples and rebuilding the hash index when loading the map. This does not have performance
impact because the algorithm only need a small Vxed number of metadata per dimension.

3This may change in the next few years when in-memory databases become more prominent and aUordable.
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GraBaSS only uses the relationship between two dimensions to build up a graph and Vnd
cliques which forms the subspaces. It is possible, that this pairwise approach does not Vnd
higher order dependencies. In this case, there are subspaces that are not found by GraBaSS or
subspaces that do not reach their maximum size. The pairwise approach was not only chosen
for performance but also because it is suXcient for the most data set. In this chapter, I will
show how a higher order data set could look like, why this kind is not very common and how
to handle them.

4.1 Constructing a special dataset

In mathematical terms, higher order dependencies exists because of the following fact:

Theorem 6. Given three dimensions X , Y and Z , which satisfy the following requirement:

P (X = x, Y = y) = P (X = x)P (Y = y) , ∀(x, y) ∈ X × Y
P (Y = y, Z = z) = P (Y = y)P (Z = z) , ∀(y, z) ∈ Y × Z
P (Z = z,X = x) = P (Z = z)P (X = x) , ∀(z, x) ∈ Z ×X

(4.1)

there can cases where ∃(x, y, z) ∈ X × Y × Z :

P (X = x, Y = y, Z = z) 6= P (X = x)P (Y = y)P (Z = z) (4.2)

So condition 4.1 is not suXcient for independence of the given dimensions.

Proof. See example described below.

To illustrate the situation explained in theorem 6, consider the following a dataset, that is
made of many random points (x, y, z) ∈ [0, 1)3, that satisfy the following constraint:

(x+ y + z) mod 1 = 0 (4.3)

The points are uniform distributed if you project them on one or two dimensions. But if you
calculate the three dimensional distribution, the points do not show a uniform distribution. (see
Figure 4.1). Because the generated points have two degrees of freedom, the two dimensional
distribution test will fail. It is also possible to generate datasets with even more degrees of
freedom using the same technique.1

1You may not be able to imagine datasets with more than three dimensions. For 4 dimensions, you Vnd some help:
http://crepererum.github.io/brain4D/#constructed
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4 How to beat the system

Figure 4.1: Situation described in Equation 4.3
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The problem occurs every time, when the dataset contains a subspace with n ∈ N+ Di-
mensions but m ∈ {1, . . . , n− 1} degrees of freedom. Furthermore the dependency of each
dimension on the degrees of freedom has to be equal, so no relation is visible in two dimen-
sional projections. Especially the last condition is uncommon when looking at real world data
sets.

4.2 Handling this issue

For data sets which has dimensions described in theorem 6, I will propose a simple method
to handle them. To get a good performance on high dimensional datasets, it is not possible to
check all higher order dependencies. Because the described problem occurs when the degrees
of freedom are not aligned with the dimensions, a transformation of the dataset to the degrees
of freedom would help. PCA is a well known method which Vnds such transformations. As
shown in [SP07], a PCA can be computed in O(|D|2 h + |D|2 |N |) where h is the number of
degrees of freedom. If the dependencies of the dimension are formed by a near-linear process,
PCA will Vnd them. The result of the transformation can be used as input for GraBaSS. The
isolated subspaces and the transformation found by PCA together explain the relation between
dimensions. If there is any prior knowledge about the data set, it can be used to Vnd such
problematic dimensions. Note, that PCA can also be applied to subspaces before and after
using GraBaSS, where the pre-analysis subspaces can be extracted by using expert knowledge.
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High dimensional datasets are not a very common research topics. In this chapter I will
describe some data sources and possible applications of the described algorithm. I also show
some interpretations of subspaces in diUerent datasets and some failed approaches of Vnding
them.
This chapter will also compare GraBaSS against ENCLUS, which is described in [CFZ99].

The main parameters of ENCLUS are named as stated in the paper, so they are ε and ω, but the
binning parameter is ξ, and describes the number of bins. So the parameter M of the ENCLUS
paper for a dimension X is M= maxX−minX

ξ . Both algorithms use the same implementation
techniques and data backend described in chapter 3. They are compiled using Clang 3.3 using
-O3 and -ffast-math Wags. Using this optimization, Clang is able to to vectorize some parts
of the implementation. This means, that loops can be replaced by a variant that uses SIMD
operations, which speeds up the compiled executable. The used TBB has version 4.0.

To get, isolate and pre-process the data I’ve used some scripts. Because I think open research
should not only contain open publications but also open data sources, you can Vnd the scripts
and some notes about them online.1 Should you have some questions, Vnd a bug or want to
contribute, feel free to use the issue tracker or Vle a pull request.

5.1 Architecture and Climate

This data set is a time series that is used to determine, when windows of a building should
be opened and when they should closed. To archive this, diUerent metrics are measured at
diUerent locations of the builds, e.g.:

• light intensity from diUerent directions

• wind force and direction

• outer and inner air temperature

• temperature of the building itself

• energy consumption of lighting, ventilation, air conditioner, diUerent consumers in the
rooms

• CO2 concentration

• status of the manual sun protection system and manual opened windows

1https://github.com/crepererum/GSD
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The data set is only available for institute members, so I cannot provide a source. The
original data set contains 434 dimensions and 43 896 objects, where the dimensions are the
diUerent metrics and the objects are the diUerent points in time. Because the data set contains
missing values, it is preprocessed. Dimensions are removed when they contain more then 10%
missing values. After this step, all objects that still have some cells with missing values are also
removed. This cuts the data set down to 271 columns and 35 400 objects.
GraBaSS gets invoked with te = 0.15, tn = 0.65 and d = 3. It tends to group metrics of

subsystems together, that have some logical dependency, e.g.:

• volume of supply air, volume of used air, energy consumption for both systems

• air temperature in diUerent parts of the building

• temperature of diUerent parts of building itself

• temperature of some parts of the building itself and temperature of some rooms

• CO2 concentration at some measure station and temperature of some parts of the build-
ing

• number of persons in a room, manual window state and volume of supply air and used
air

The algorithm also produces some less logical results, as the CO2 concentration at some
points and the temperature of some parts of the building, but this cases are very rare, so they
might be anomalies. The graph Vxing works pretty well and reduced the number of similar
subspaces.
ENCLUS has a problem with this data set, because it contains some outliers. Some dimen-

sions contains only small data from 0.1 to 0.2, but some measures are described by values of
100 and more. Because ENCLUS uses an equi-width descretizer and calculates entropy values
on this discrete values, it tries to join all dimensions with this kind of outliers. It also destroys
some useful subspaces, if you are able to get some results. Because of the size of the data set,
the number of aUected dimensions and the size of the subspace is also large. This increases
calculation of ENCLUS to calculate the results, so it does not Vnish within hours.

5.2 Drug Database

A source of high dimensional data is the list of ingredients of drugs. They collect important
information about common combination of substances because one ingredient requires another,
e.g. alcohol is a solvent for many chemicals. Common combinations can also be formed by
combined substances that are used in drugs because manufactures produce them as a base for
their product or because they act as a reseller for premixed drugs. The data set also contains
information about chemicals that are never used together because they react with each other
or because it does not make sense in terms of usability.
I hoped to Vnd some public drug data bases containing drugs registered in Germany or in

the EU. But this was not the case. Either they were only usable via a very limited interface or it
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would cost me a enormous amount of money to buy a license. Since the open data movement
in USA has a very long tradition, it was easy to Vnd an American drug database, that is easy
to parse and provides a huge data collection.2 The entire data set contains 24 094 drugs and
4139 possible ingredients. Figure 5.1 visualizes a spectrum of this dataset, where rows act as
drugs and image columns describe if a speciVc drug contains a speciVc substance.3 The most
common ingredients in this data are:

• water

• glycerin

• titanium dioxide

• propylene glycol

• dimethicone

The most common way to handle this data set would be the usage of a pattern miner, because
the data table has only binary entries. I decided to use this data set nevertheless, because the
dimensions have very good descriptions and I am able to explain subspaces.
To convert this data to a legal input data set, it is processed as followed: The only prepro-

cessing that is done is to reduce the ingredients to their lower case text because the data set
contains the same ingredients written in diUerent combinations of lower and upper case letters.
After the case normalization build a list of all ingredients in all drugs and bring them into a
Vxed order. Every ingredient forms one dimension. Then build a binary vector for every drug
in the database where 1 describes that a ingredient is contained in the drug and 0 if this is not
the case. I provide a parser and converter for this kind of data.
GraBaSS is used with te = 0.25, tn = 0.65 and d = 3. It extracts many subspaces, that

describe rare combinations, that are used in some natural products. The listed substances are
also natural, e.g. leafs, Wowers and roots. Because the ingredients are so uncommon, they form
subspaces when only used together only a few times. To handle this issue, the ingredients are
sorted according to the number of drugs that uses them and the upper quarter is picked. For
this reduces data set, GraBaSS Vnds subspaces like this:

• alanine; arginine; glycine; methionine; phenylalanine; proline; thrionine

• citronellal; d&c orange no. 5; d&c red no. 6, 7, 21, 30 and 36

• barium, calcium, ethylene, iron, isopropylparaben, sulfate ion

• avobenzone; homosalate; octisalate; octocrylene; oxybenzone

ENCLUS extracted very small subspaces. When increasing ε, the algorithm does not Vnish
within hours because the data set is too large. So I got no usable results.

2http://dailymed.nlm.nih.gov/dailymed/downloadLabels.cfm
3A full-resolution and monitor friendly version can be found at
http://studwww.ira.uni-karlsruhe.de/~s_mneuma/download/drugs.jpeg
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Figure 5.1: drugs spectrum
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Table 5.1: Test results

Data set GraBaSS ENCLUS PCA Random Fullspace

pendigits 0.77 0.52 0.43 0.55 0.55
ozone 0.66 0.53 0.48 0.51 0.51
musk 0.74 0.60 0.52 0.63 0.44

5.3 Tests with outliers

To test if the subspaces found be GraBaSS are usable for automatic data processing, I compared
it to ENCLUS [CFZ99], PCA, random and the fullspace by doing an outlier analysis with LOF
[Bre+00]. Because GraBaSS searches subspaces according to the similarity of the dimensions
and does not look if the subspaces are good for outlier detection, a special post Vltering is
required. It should ensure that only subspaces are used for outlier detection which are good
for this kind of analysis. I decided to use a very simple approach and Vltered out subspaces
found by GraBaSS with an entropy below a limit which is named fpost. More advanced Vltering
techniques are left for further research. For the comparison with PCA, the PCA was calculated
and |D| subspaces are generated with increasing number of dimensions so that the Vrst sub-
space only contains the Vrst PCA dimensions, the second the Vrst two and so on. To compare
against a random selection of subspaces, 20 subspaces are generated. For each, the number of
dimensions is chosen uniformly from 1 to |D| and then the dimensions are picked randomly.
I used the pendigits, ozone and musk data set from the UCI Machine Learning Repository4.

The LOF values of all subspaces get summed up and the area under curve is calculated. The
extraction of the true outliers from the data sets is described below. Table 5.1 shows a sum up
of all results.
The pendigits data set5 was prepared by choosing the smallest class and sampling this

class down to create outliers. GraBaSS was invoked with te = 0.003, tn = 0.65, d = 2 and
fpost = 12.5. The post Vlter stripped 5 4-dimensional subspaces so it Vnally found 12 subspaces.
I started ENCLUS with ε = 37, ω = 12.745 and ξ = 82 and I got 8 subspaces.
Of the ozone data set6 I chose the normal day as outliers because it was the best choice for

all all subspace sets except of PCA. GraBaSS got Vred up with te = 0.05, tn = 0.65, d = 3
and fpost = 10.4 and Vnished with 18 subspaces. This example shows that the post Vlter
does always removed the smallest subspace, because it removed some 1-dimensional, the only
existing 2-dimensional and some 3-dimensional subspaces, but the Vnal result still has some
1-dimensional subspaces left. ENCLUS was started with ε = 23, ω = 10.6 and ξ = 50 and gave
me 10 subspaces.
For the musk data set7 the musks class is chosen from the clean2 Vle to be the true outliers.

GraBaSS got the following parameters: te = 0.30, tn = 0.32, d = 3 and fpost = 5. The post
Vlter removed 8 of 22 1-dimensional subspaces, so LOF got 79 subspaces as input. The Vlter

4https://archive.ics.uci.edu/ml/index.html
5https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
6https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
7https://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29
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did a pretty good job here because it removed many trash dimensions. I passed ENCLUS the
parameters ε = 17, ω = 8.2 and ξ = 81 and found 329 subspaces.
In all cases it was easier to get good subspaces from GraBaSS as from ENCLUS because

ENCLUS tended to explode in complexity when trying to get high dimensional subspaces. This
shows that the bottom-up approach the authors chosen for it does not work very well. When
looking at the results the small subspaces always look like the have to get merged later but the
complexity of the algorithm prevented me from running ENCLUS with such a parameter.

5.4 Scalability

There are two scaling series, one for the number of objects and one for the number of dimen-
sions. The GraBaSS parameters are Vxed per each series. Because ENCLUS requires to change
the ξ parameter to handle more dense data, it is changed when increasing the number of objects.
ENCLUS is also very unstable when changing the number of bins, the number of dimensions or
the density of the data. So I tried adjust the parameters to get the approximate same results for
each data set of the series. For ENCLUS it was not possible to get subspaces above 4 dimensions
because the complexity of the bottom-up approach just explodes when setting the parameters
to get so interesting results.
The series with increasing number of objects contains always 100 dimensions whereas the

number of objects is set to 10 000, 20 000, 40 000, 60 000, 80 000 and 100 000. GraBaSS scales
nearly linear. I expect that this fact may change when using bigger data sets, because the
binning requires O(|D| · |N | · log |N |) and takes about 40% of the entire calculation time.
Table 5.3a shows the time proVle. Changing the number of objects does not heavily change
the time distribution over the parts of the algorithm. For ENCLUS I set ξ to

√
|N | to satisfy

the higher information density. Because increasing the number of bins also increases the
complexity when calculating metrics for higher dimensional subspaces, ENCLUS only provides
result in acceptable time when running with at most 60 000 objects. This problem occurs with
every algorithm that tries to measure high dimensional subspaces directly on a discretized
data set. It is not possible to set the number of bins for low dimensional subspaces correctly
on dense data and avoiding a sparse grid on high dimensional data which also leads to high
computation times. Figure 5.3a shows a scaled plot of the durations that GraBaSS and ENCLUS
require. I chose a diUerent scaling for the two algorithms to remove constant factors which can
occur because of diUerent data structures, non equal implementations8, diUerent cache friendly
or unfriendly layouts or constant factors which are part of the algorithm itself.
The dimension scaling series contains 100, 200, 400, 600, 800 and 1000 dimensions at a

stable objects count of 10 000. GraBaSS and ENCLUS scale nearly equal as Figure 5.3b show, but
the results are pretty diUerent. GraBaSS can provide higher dimensional subspaces and handles
the higher dimensional information. ENCLUS got stuck in low dimensional subspaces because
the calculation times increased so heavily when trying to get more interesting results. This
is a problem every algorithm that tries to calculate non-linear metrics for higher dimensional
subspaces. This are all metrics that are not just a summation over all projected data points,

8I have tried to implement both algorithm in the same way but diUerent algorithms also mean diUerent techniques.
So I cannot ensure that the two implementations have exactly the same quality.
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Figure 5.2: Scalability comparison
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Table 5.2: Time proVle

#Objects 10 000 20 000 40 000 60 000 80 000 100 000

Binning 39% 40% 41% 40% 41% 41%
Pre-calulation < 1%
Graph build-up 59% 60% 59% 59% 58% 58%
Graph Vxing < 1%
Clique searcher < 1%

Total 1.89 3.59 7.17 10.76 14.56 18.25

(a) Synthetic data set with 100 dimensions

#Dimensions 100 200 400 600 800 1000

Binning 39% 26% 29% 18% 17% 14%
Pre-calulation < 1%
Graph build-up 59% 73% 70% 82% 82% 86%
Graph Vxing < 1%
Clique searcher < 1%

Total 1.89 5.79 22.91 43.76 77.04 118.52

(b) Synthetic data set with 10 000 objects

Data set architecture drugs musk

Binning 61% 30% 40%
Pre-calulation < 1% 3% < 1%
Graph build-up 38% 67% 57%
Graph Vxing < 1%
Clique searcher < 1%

Total 20.72 76.65 1.94

(c) Real world data sets
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Table 5.3: Scaling of graph processing

te 1 10−1 10−2 10−3 10−4 10−5

#Edges 0 1594 10 546 18 866 22 087 22 921
Max. #neighbors 0 53 178 236 257 261
Degeneracy 0 42 112 178 200 208
#Cliques 272 134 2202 6977 13 951 23 557

Graph build-up 48% 48% 44% 45% 44% 42%
Graph Vxing < 1% < 1% 19% 21% 24% 25%
Clique searcher < 1% < 1% < 1% 3% 4% 5%

Total 17.07 18.19 24.83 29.50 32.02 33.02

so all density based approaches are aUected. As table 5.3b shows, the time proVle of GraBaSS
changes when increasing the number of dimensions. The reason for this is the linear scaling
of the binning over the number of dimensions whereas the graph build-up required quadratic
time.

To get a more detailed time proVle of GraBaSS, I also tested it with the other data sets of this
chapter. The details can be found in table 5.3c. The pendigits and ozone data set where not
measured because they are to small to get a solid result. Whereas the distribution of binning and
graph build-up changes, the actual graph based operations like Vxing and clique searching are
always very small. So I decided to test how this parts can aUect the calculation time. For this, I
chose the architecture data set and passed a changing te parameter to it to increase the number
of edges. The graph distance parameter d was set to 3 and the neighborhood threshold tn to
0.5 to get some workload to the graph Vxing but to avoid a overproduction of edges. Table 5.3
shows the result. The number of edges is measured before doing a graph Vxing, the maximum
neighbor count and degeneracy are collected after Vxing the graph. The time the graph build-up
takes increases when increasing the number of edges but the percentage stays nearly the same.
The graph Vxing is the part which time amount increases the most. The implementation of this
part is not parallelized because this part get not stressed too much under normal conditions.
As proven in theorem 5 the complexity of this part is O(|V | ·m2). A parallel version should
take a smaller amount but this would only be a constant factor. Surprisingly the amount for
the clique Vnder is always very low. The numbers clearly show that even a very unrealistic
number of edges only leads to about 100% more calculation time and no explosive behavior.
Because of the fact that the graph processing does not break the complexity of the algorithm,
the main goal of designing a method which operates in O(|D| · |N | · log |N | + |D|2 · |N |) is
reached.
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Feature selection is an important task when analyzing data. It helps to understand relationships
of attributes, speeds up further analysis tasks and handles the curse of dimensionality. Big data
sets of today and the next years require an eXcient way and parallel algorithms that provide
solid results. This can only be done by using new approaches. Usability is another important
aspect because it enables analysts to act faster and to get better results. With GraBaSS, I devel-
oped one small piece for the data processing of the next years. It is not only a algorithm, but
also a framework and an illustration of ideas that can used by other researcher. It outperforms
other approaches when in comes to calculation time and provides clearer, in some cases even
better results. The implementation uses optimizations to archive high performance and low
memory footprint and the developed data backend provides a foundation for other algorithms.
But GraBaSS and its implementation are not perfect. The chosen similarity is not suitable

for all tasks, especially when special expectations are made, what means to be similar. It might
be also possible to Vnd a better common similarity which works well for the most data sets.
The chosen post-Vlter is very simple. It may be replaced by other metrics e.g. for measuring
contrast or Vltering according to training data set so the result only contains subspaces where
you can Vnd special clusters or outliers very well. GraBaSS does not perform a pre-Vltering so
that dimensions get pruned before they are compared to others. This can speed up GraBaSS and
avoids that the entire chain of feature selection and further processing operates on dimensions
that do not contain useful information. Another part, which is not researched very well are
incremental algorithms, which do not require a full recalculation when new data points or even
new dimensions are added or even removed to the data set. This would enable better real time
analysis of data, because incremental clustering would allow to choose te interactively or by an
automatic algorithm so it produces a good cluster count. Automatic parameter detection might
also be possible when tn and d should be chosen, because most humans are able to visually
detect the problem of small quasi-cliques so an algorithm which does something similar could
solve the problem for bigger data sets.
The realization in C++ is good but does not use GPUs or other accelerators like FGPAs

and is not scalable about multiple computers. To archive this the Vrst one, an OpenCL based
implementation and further memory optimization could help. To use this common technology
which operates as interface to GPUs, CPUs, FPGAs and other accelerators, the code has to
refactored. It has to be split in small tasks and with a low amount of shared read-write memory.
To scale over multiple computers it is required to provide a solid foundation of network code,
error detection and load balancing. Heterogeneous architectures makes this task even more
complicated. The data backend currently does not support any data checks or normalization
for multiple architectures. A high performance, in-memory database which provides a generic
interface for this kind of algorithm would be an ideal candidate to solve all these problems.
There are many topics left for research especially because data set size increases and real
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time information becomes more important in times where computers do not get faster but get
more parallel computing units. I believe that this is not my last work in this Veld and I hope
to provide a small piece for better technology that may help other people in a wide range of
tasks, today and in future times.
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